

simplejson — JSON encoder and decoder

JSON (JavaScript Object Notation) [http://json.org], specified by
RFC 7159 [https://tools.ietf.org/html/rfc7159.html] (which obsoletes RFC 4627 [https://tools.ietf.org/html/rfc4627.html]) and by
ECMA-404 [http://www.ecma-international.org/publications/standards/Ecma-404.htm],
is a lightweight data interchange format inspired by
JavaScript [http://en.wikipedia.org/wiki/JavaScript] object literal syntax
(although it is not a strict subset of JavaScript 1).

simplejson is a simple, fast, complete, correct and extensible
JSON encoder and decoder for Python. It is pure Python code
with no dependencies, but includes an optional C extension
for a serious speed boost.

simplejson exposes an API familiar to users of the standard library
marshal and pickle modules. It is the externally maintained
version of the json library, but maintains
compatibility with the latest Python 3.8+ releases back to Python 3.3
as well as the legacy Python 2.5 - Python 2.7 releases.

Development of simplejson happens on Github:
http://github.com/simplejson/simplejson

Encoding basic Python object hierarchies:

>>> import simplejson as json
>>> json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])
'["foo", {"bar": ["baz", null, 1.0, 2]}]'
>>> print(json.dumps("\"foo\bar"))
"\"foo\bar"
>>> print(json.dumps(u'\u1234'))
"\u1234"
>>> print(json.dumps('\\'))
"\\"
>>> print(json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True))
{"a": 0, "b": 0, "c": 0}
>>> from simplejson.compat import StringIO
>>> io = StringIO()
>>> json.dump(['streaming API'], io)
>>> io.getvalue()
'["streaming API"]'

Compact encoding:

>>> import simplejson as json
>>> obj = [1,2,3,{'4': 5, '6': 7}]
>>> json.dumps(obj, separators=(',', ':'), sort_keys=True)
'[1,2,3,{"4":5,"6":7}]'

Pretty printing:

>>> import simplejson as json
>>> print(json.dumps({'4': 5, '6': 7}, sort_keys=True, indent=4 * ' '))
{
 "4": 5,
 "6": 7
}

Decoding JSON:

>>> import simplejson as json
>>> obj = ['foo', {'bar': ['baz', None, 1.0, 2]}]
>>> json.loads('["foo", {"bar":["baz", null, 1.0, 2]}]') == obj
True
>>> json.loads('"\\"foo\\bar"') == '"foo\x08ar'
True
>>> from simplejson.compat import StringIO
>>> io = StringIO('["streaming API"]')
>>> json.load(io)[0] == 'streaming API'
True

Using Decimal instead of float:

>>> import simplejson as json
>>> from decimal import Decimal
>>> json.loads('1.1', use_decimal=True) == Decimal('1.1')
True
>>> json.dumps(Decimal('1.1'), use_decimal=True) == '1.1'
True

Specializing JSON object decoding:

>>> import simplejson as json
>>> def as_complex(dct):
... if '__complex__' in dct:
... return complex(dct['real'], dct['imag'])
... return dct
...
>>> json.loads('{"__complex__": true, "real": 1, "imag": 2}',
... object_hook=as_complex)
(1+2j)
>>> import decimal
>>> json.loads('1.1', parse_float=decimal.Decimal) == decimal.Decimal('1.1')
True

Specializing JSON object encoding:

>>> import simplejson as json
>>> def encode_complex(obj):
... if isinstance(obj, complex):
... return [obj.real, obj.imag]
... raise TypeError(repr(obj) + " is not JSON serializable")
...
>>> json.dumps(2 + 1j, default=encode_complex)
'[2.0, 1.0]'
>>> json.JSONEncoder(default=encode_complex).encode(2 + 1j)
'[2.0, 1.0]'
>>> ''.join(json.JSONEncoder(default=encode_complex).iterencode(2 + 1j))
'[2.0, 1.0]'

Using simplejson.tool from the shell to validate and pretty-print:

$ echo '{"json":"obj"}' | python -m simplejson.tool
{
 "json": "obj"
}
$ echo '{ 1.2:3.4}' | python -m simplejson.tool
Expecting property name enclosed in double quotes: line 1 column 3 (char 2)

Parsing multiple documents serialized as JSON lines (newline-delimited JSON):

>>> import simplejson as json
>>> def loads_lines(docs):
... for doc in docs.splitlines():
... yield json.loads(doc)
...
>>> sum(doc["count"] for doc in loads_lines('{"count":1}\n{"count":2}\n{"count":3}\n'))
6

Serializing multiple objects to JSON lines (newline-delimited JSON):

>>> import simplejson as json
>>> def dumps_lines(objs):
... for obj in objs:
... yield json.dumps(obj, separators=(',',':')) + '\n'
...
>>> ''.join(dumps_lines([{'count': 1}, {'count': 2}, {'count': 3}]))
'{"count":1}\n{"count":2}\n{"count":3}\n'

Note

JSON is a subset of YAML [http://yaml.org/] 1.2. The JSON produced by
this module’s default settings (in particular, the default separators
value) is also a subset of YAML 1.0 and 1.1. This module can thus also be
used as a YAML serializer.

Basic Usage

	
simplejson.dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, encoding='utf-8', default=None, use_decimal=True, namedtuple_as_object=True, tuple_as_array=True, bigint_as_string=False, sort_keys=False, item_sort_key=None, for_json=None, ignore_nan=False, int_as_string_bitcount=None, iterable_as_array=False, **kw)

	Serialize obj as a JSON formatted stream to fp
(a .write()-supporting file-like object) using this
conversion table.

The simplejson module will produce str objects in
Python 3, not bytes objects. Therefore, fp.write() must
support str input.

See dumps() for a description of each argument. The only difference
is that this function writes the resulting JSON document to fp instead
of returning it.

Note

When using Python 2, if ensure_ascii is set to false,
some chunks written to fp may be unicode instances, subject
to normal Python str to unicode coercion rules.
Unless fp.write() explicitly understands unicode
(as in codecs.getwriter()) this is likely to cause an error.
It’s best to leave the default settings, because they are safe and it
is highly optimized.

	
simplejson.dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, encoding='utf-8', default=None, use_decimal=True, namedtuple_as_object=True, tuple_as_array=True, bigint_as_string=False, sort_keys=False, item_sort_key=None, for_json=None, ignore_nan=False, int_as_string_bitcount=None, iterable_as_array=False, **kw)

	Serialize obj to a JSON formatted str.

If skipkeys is true (default: False), then dict keys that are not
of a basic type (str, int, long,
float, bool, None) will be skipped instead of
raising a TypeError.

Note

When using Python 2, both str and unicode are
considered to be basic types that represent text.

If ensure_ascii is false (default: True), then the output may
contain non-ASCII characters, so long as they do not need to be escaped
by JSON. When it is true, all non-ASCII characters are escaped.

Note

When using Python 2, if ensure_ascii is set to false,
the result may be a unicode object. By default, as a memory
optimization, the result would be a str object.

If check_circular is false (default: True), then the circular
reference check for container types will be skipped and a circular
reference will result in an OverflowError (or worse).

If allow_nan is false (default: True), then it will be a
ValueError to serialize out of range float values
(nan, inf, -inf) in strict compliance of the original
JSON specification. If allow_nan is true, their JavaScript equivalents
will be used (NaN, Infinity, -Infinity). See also ignore_nan
for ECMA-262 compliant behavior.

If indent is a string, then JSON array elements and object members
will be pretty-printed with a newline followed by that string repeated
for each level of nesting. None (the default) selects the most compact
representation without any newlines. For backwards compatibility with
versions of simplejson earlier than 2.1.0, an integer is also accepted
and is converted to a string with that many spaces.

If specified, separators should be an
(item_separator, key_separator) tuple. The default is
(', ', ': ') if indent is None and (',', ': ')
otherwise. To get the most compact JSON representation,
you should specify (',', ':') to eliminate whitespace.

If encoding is not None, then all input bytes objects in
Python 3 and 8-bit strings in Python 2 will be transformed
into unicode using that encoding prior to JSON-encoding. The default is
'utf-8'. If encoding is None, then all bytes objects
will be passed to the default function in Python 3

Changed in version 3.15.0: encoding=None disables serializing bytes by default in
Python 3.

default(obj) is a function that should return a serializable version of
obj or raise TypeError. The default implementation always raises
TypeError.

To use a custom JSONEncoder subclass (e.g. one that overrides the
default() method to serialize additional types), specify it with the
cls kwarg.

Note

Subclassing is not recommended. Use the default kwarg
or for_json instead. This is faster and more portable.

If use_decimal is true (default: True) then decimal.Decimal
will be natively serialized to JSON with full precision.

If namedtuple_as_object is true (default: True),
objects with _asdict() methods will be encoded
as JSON objects.

If tuple_as_array is true (default: True),
tuple (and subclasses) will be encoded as JSON arrays.

If iterable_as_array is true (default: False),
any object not in the above table that implements __iter__()
will be encoded as a JSON array.

Changed in version 3.8.0: iterable_as_array is new in 3.8.0.

If bigint_as_string is true (default: False), int 2**53
and higher or lower than -2**53 will be encoded as strings. This is to
avoid the rounding that happens in Javascript otherwise. Note that this
option loses type information, so use with extreme caution.
See also int_as_string_bitcount.

If sort_keys is true (not the default), then the output of dictionaries
will be sorted by key; this is useful for regression tests to ensure that
JSON serializations can be compared on a day-to-day basis.

If item_sort_key is a callable (not the default), then the output of
dictionaries will be sorted with it. The callable will be used like this:
sorted(dct.items(), key=item_sort_key). This option takes precedence
over sort_keys.

If for_json is true (not the default), objects with a for_json()
method will use the return value of that method for encoding as JSON
instead of the object.

If ignore_nan is true (default: False), then out of range
float values (nan, inf, -inf) will be serialized as
null in compliance with the ECMA-262 specification. If true, this will
override allow_nan.

If int_as_string_bitcount is a positive number n (default: None),
int 2**n and higher or lower than -2**n will be encoded as strings. This is to
avoid the rounding that happens in Javascript otherwise. Note that this
option loses type information, so use with extreme caution.
See also bigint_as_string (which is equivalent to int_as_string_bitcount=53).

Note

JSON is not a framed protocol so unlike pickle or marshal it
does not make sense to serialize more than one JSON document without some
container protocol to delimit them.

	
simplejson.load(fp, encoding='utf-8', cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, use_decimal=None, **kw)

	Deserialize fp (a .read()-supporting file-like object containing a JSON
document) to a Python object using this
conversion table. JSONDecodeError will be
raised if the given JSON document is not valid.

If fp.read() returns bytes, such as a file opened in binary mode,
then an appropriate encoding should be specified (the default is UTF-8).

Note

load() will read the rest of the file-like object as a string and
then call loads(). It does not stop at the end of the first valid
JSON document it finds and it will raise an error if there is anything
other than whitespace after the document. Except for files containing
only one JSON document, it is recommended to use loads().

Note

In Python 2, str is considered to be bytes and this
is the default behavior of all file objects. If the contents
of fp are encoded with an ASCII based encoding other than UTF-8
(e.g. latin-1), then an appropriate encoding name must be specified.
Encodings that are not ASCII based (such as UCS-2) are not allowed,
and should be wrapped with codecs.getreader(fp)(encoding), or
decoded to a unicode object and passed to loads().
The default setting of 'utf-8' is fastest and should be using
whenever possible.

If fp.read() returns str then decoded JSON strings that
contain only ASCII characters may be parsed as str for
performance and memory reasons. If your code expects only
unicode the appropriate solution is to wrap fp with a
reader as demonstrated above.

See loads() for a description of each argument. The only difference
is that this function reads the JSON document from a file-like object fp
instead of a str or bytes.

	
simplejson.loads(s, encoding='utf-8', cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, use_decimal=None, **kw)

	Deserialize s (a str or unicode instance containing a JSON
document) to a Python object. JSONDecodeError will be
raised if the given JSON document is not valid.

Note

In Python 2, str is considered to be bytes as above,
if your JSON is using an encoding that is not ASCII based, then you must
decode to unicode first.

If s is a str instance and is encoded with an ASCII based encoding
other than UTF-8 (e.g. latin-1), then an appropriate encoding name must be
specified. Encodings that are not ASCII based (such as UCS-2) are not
allowed and should be decoded to unicode first. Additionally,
decoded JSON strings that contain only ASCII characters may be parsed as
str instead of unicode for performance and memory
reasons. If your code expects only unicode the appropriate
solution is decode s to unicode prior to calling loads().

object_hook is an optional function that will be called with the result of
any object literal decode (a dict). The return value of
object_hook will be used instead of the dict. This feature can be used
to implement custom decoders (e.g. JSON-RPC [http://www.jsonrpc.org]
class hinting).

object_pairs_hook is an optional function that will be called with the
result of any object literal decode with an ordered list of pairs. The
return value of object_pairs_hook will be used instead of the
dict. This feature can be used to implement custom decoders that
rely on the order that the key and value pairs are decoded (for example,
collections.OrderedDict will remember the order of insertion). If
object_hook is also defined, the object_pairs_hook takes priority.

parse_float, if specified, will be called with the string of every JSON
float to be decoded. By default, this is equivalent to float(num_str).
This can be used to use another datatype or parser for JSON floats
(e.g. decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int
to be decoded. By default, this is equivalent to int(num_str). This can
be used to use another datatype or parser for JSON integers
(e.g. float).

parse_constant, if specified, will be called with one of the following
strings: '-Infinity', 'Infinity', 'NaN'. This can be used to
raise an exception if invalid JSON numbers are encountered.

If use_decimal is true (default: False) then parse_float is set to
decimal.Decimal. This is a convenience for parity with the
dump() parameter.

If iterable_as_array is true (default: False),
any object not in the above table that implements __iter__()
will be encoded as a JSON array.

Changed in version 3.8.0: iterable_as_array is new in 3.8.0.

To use a custom JSONDecoder subclass, specify it with the cls
kwarg. Additional keyword arguments will be passed to the constructor of the
class. You probably shouldn’t do this.

Note

Subclassing is not recommended. You should use object_hook or
object_pairs_hook. This is faster and more portable than subclassing.

Encoders and decoders

	
class simplejson.JSONDecoder(encoding='utf-8', object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, strict=True)

	Simple JSON decoder.

Performs the following translations in decoding by default:

	JSON

	Python 2

	Python 3

	object

	dict

	dict

	array

	list

	list

	string

	unicode

	str

	number (int)

	int, long

	int

	number (real)

	float

	float

	true

	True

	True

	false

	False

	False

	null

	None

	None

It also understands NaN, Infinity, and -Infinity as their
corresponding float values, which is outside the JSON spec.

encoding determines the encoding used to interpret any str objects
decoded by this instance ('utf-8' by default). It has no effect when decoding
unicode objects.

Note that currently only encodings that are a superset of ASCII work, strings
of other encodings should be passed in as unicode.

object_hook is an optional function that will be called with the result of
every JSON object decoded and its return value will be used in place of the
given dict. This can be used to provide custom deserializations
(e.g. to support JSON-RPC class hinting).

object_pairs_hook is an optional function that will be called with the
result of any object literal decode with an ordered list of pairs. The
return value of object_pairs_hook will be used instead of the
dict. This feature can be used to implement custom decoders that
rely on the order that the key and value pairs are decoded (for example,
collections.OrderedDict will remember the order of insertion). If
object_hook is also defined, the object_pairs_hook takes priority.

parse_float, if specified, will be called with the string of every JSON
float to be decoded. By default, this is equivalent to float(num_str).
This can be used to use another datatype or parser for JSON floats
(e.g. decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int
to be decoded. By default, this is equivalent to int(num_str). This can
be used to use another datatype or parser for JSON integers
(e.g. float).

parse_constant, if specified, will be called with one of the following
strings: '-Infinity', 'Infinity', 'NaN'. This can be used to
raise an exception if invalid JSON numbers are encountered.

strict controls the parser’s behavior when it encounters an invalid
control character in a string. The default setting of True means that
unescaped control characters are parse errors, if False then control
characters will be allowed in strings.

	
decode(s)

	Return the Python representation of the JSON document s. See
loads() for details. It is preferable to use that rather
than this class.

	
raw_decode(s[, idx=0])

	Decode a JSON document from s (a str or unicode
beginning with a JSON document) starting from the index idx and return
a 2-tuple of the Python representation and the index in s where the
document ended.

This can be used to decode a JSON document from a string that may have
extraneous data at the end, or to decode a string that has a series of
JSON objects.

JSONDecodeError will be raised if the given JSON
document is not valid.

	
class simplejson.JSONEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None, use_decimal=True, namedtuple_as_object=True, tuple_as_array=True, bigint_as_string=False, item_sort_key=None, for_json=True, ignore_nan=False, int_as_string_bitcount=None, iterable_as_array=False)

	Extensible JSON encoder for Python data structures.

Supports the following objects and types by default:

	Python

	JSON

	dict, namedtuple

	object

	list, tuple

	array

	str, unicode

	string

	int, long, float

	number

	True

	true

	False

	false

	None

	null

Note

The JSON format only permits strings to be used as object
keys, thus any Python dicts to be encoded should only have string keys.
For backwards compatibility, several other types are automatically
coerced to strings: int, long, float, Decimal, bool, and None.
It is error-prone to rely on this behavior, so avoid it when possible.
Dictionaries with other types used as keys should be pre-processed or
wrapped in another type with an appropriate for_json method to
transform the keys during encoding.

It also understands NaN, Infinity, and -Infinity as their
corresponding float values, which is outside the JSON spec.

To extend this to recognize other objects, subclass and implement a
default() method with another method that returns a serializable object
for o if possible, otherwise it should call the superclass implementation
(to raise TypeError).

Note

Subclassing is not recommended. You should use the default
or for_json kwarg. This is faster and more portable than subclassing.

If skipkeys is false (the default), then it is a TypeError to
attempt encoding of keys that are not str, int, long, float, Decimal, bool,
or None. If skipkeys is true, such items are simply skipped.

If ensure_ascii is true (the default), the output is guaranteed to be
str objects with all incoming unicode characters escaped. If
ensure_ascii is false, the output will be a unicode object.

If check_circular is true (the default), then lists, dicts, and custom
encoded objects will be checked for circular references during encoding to
prevent an infinite recursion (which would cause an OverflowError).
Otherwise, no such check takes place.

If allow_nan is true (the default), then NaN, Infinity, and
-Infinity will be encoded as such. This behavior is not JSON
specification compliant, but is consistent with most JavaScript based
encoders and decoders. Otherwise, it will be a ValueError to encode
such floats. See also ignore_nan for ECMA-262 compliant behavior.

If sort_keys is true (not the default), then the output of dictionaries
will be sorted by key; this is useful for regression tests to ensure that
JSON serializations can be compared on a day-to-day basis.

If item_sort_key is a callable (not the default), then the output of
dictionaries will be sorted with it. The callable will be used like this:
sorted(dct.items(), key=item_sort_key). This option takes precedence
over sort_keys.

If indent is a string, then JSON array elements and object members
will be pretty-printed with a newline followed by that string repeated
for each level of nesting. None (the default) selects the most compact
representation without any newlines. For backwards compatibility with
versions of simplejson earlier than 2.1.0, an integer is also accepted
and is converted to a string with that many spaces.

If specified, separators should be an (item_separator, key_separator)
tuple. The default is (', ', ': ') if indent is None and
(',', ': ') otherwise. To get the most compact JSON representation,
you should specify (',', ':') to eliminate whitespace.

If specified, default should be a function that gets called for objects
that can’t otherwise be serialized. It should return a JSON encodable
version of the object or raise a TypeError.

If encoding is not None, then all input bytes objects in
Python 3 and 8-bit strings in Python 2 will be transformed
into unicode using that encoding prior to JSON-encoding. The default is
'utf-8'. If encoding is None, then all bytes objects
will be passed to the default() method in Python 3

Changed in version 3.15.0: encoding=None disables serializing bytes by default in
Python 3.

If namedtuple_as_object is true (default: True),
objects with _asdict() methods will be encoded
as JSON objects.

If tuple_as_array is true (default: True),
tuple (and subclasses) will be encoded as JSON arrays.

If iterable_as_array is true (default: False),
any object not in the above table that implements __iter__()
will be encoded as a JSON array.

Changed in version 3.8.0: iterable_as_array is new in 3.8.0.

If bigint_as_string is true (default: False), int` 2**53
and higher or lower than -2**53 will be encoded as strings. This is to
avoid the rounding that happens in Javascript otherwise. Note that this
option loses type information, so use with extreme caution.

If for_json is true (default: False), objects with a for_json()
method will use the return value of that method for encoding as JSON instead
of the object.

If ignore_nan is true (default: False), then out of range
float values (nan, inf, -inf) will be serialized as
null in compliance with the ECMA-262 specification. If true, this will
override allow_nan.

	
default(o)

	Implement this method in a subclass such that it returns a serializable
object for o, or calls the base implementation (to raise a
TypeError).

For example, to support arbitrary iterators, you could implement default
like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 return JSONEncoder.default(self, o)

Note

Subclassing is not recommended. You should implement this
as a function and pass it to the default kwarg of dumps().
This is faster and more portable than subclassing. The
semantics are the same, but without the self argument or the
call to the super implementation.

	
encode(o)

	Return a JSON string representation of a Python data structure, o. For
example:

>>> import simplejson as json
>>> json.JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo": ["bar", "baz"]}'

	
iterencode(o)

	Encode the given object, o, and yield each string representation as
available. For example:

for chunk in JSONEncoder().iterencode(bigobject):
 mysocket.write(chunk)

Note that encode() has much better performance than
iterencode().

	
class simplejson.JSONEncoderForHTML(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None, use_decimal=True, namedtuple_as_object=True, tuple_as_array=True, bigint_as_string=False, item_sort_key=None, for_json=True, ignore_nan=False, int_as_string_bitcount=None)

	Subclass of JSONEncoder that escapes &, <, and > for embedding in HTML.

It also escapes the characters U+2028 (LINE SEPARATOR) and
U+2029 (PARAGRAPH SEPARATOR), irrespective of the ensure_ascii setting,
as these characters are not valid in JavaScript strings (see
http://timelessrepo.com/json-isnt-a-javascript-subset).

Exceptions

	
exception simplejson.JSONDecodeError(msg, doc, pos, end=None)

	Subclass of ValueError with the following additional attributes:

	
msg

	The unformatted error message

	
doc

	The JSON document being parsed

	
pos

	The start index of doc where parsing failed

	
end

	The end index of doc where parsing failed (may be None)

	
lineno

	The line corresponding to pos

	
colno

	The column corresponding to pos

	
endlineno

	The line corresponding to end (may be None)

	
endcolno

	The column corresponding to end (may be None)

Standard Compliance and Interoperability

The JSON format is specified by RFC 7159 [https://tools.ietf.org/html/rfc7159.html] and by
ECMA-404 [http://www.ecma-international.org/publications/standards/Ecma-404.htm].
This section details this module’s level of compliance with the RFC.
For simplicity, JSONEncoder and JSONDecoder subclasses, and
parameters other than those explicitly mentioned, are not considered.

This module does not comply with the RFC in a strict fashion, implementing some
extensions that are valid JavaScript but not valid JSON. In particular:

	Infinite and NaN number values are accepted and output;

	Repeated names within an object are accepted, and only the value of the last
name-value pair is used.

Since the RFC permits RFC-compliant parsers to accept input texts that are not
RFC-compliant, this module’s deserializer is technically RFC-compliant under
default settings.

Character Encodings

The RFC recommends that JSON be represented using either UTF-8, UTF-16, or
UTF-32, with UTF-8 being the recommended default for maximum interoperability.

As permitted, though not required, by the RFC, this module’s serializer sets
ensure_ascii=True by default, thus escaping the output so that the resulting
strings only contain ASCII characters.

Other than the ensure_ascii parameter, this module is defined strictly in
terms of conversion between Python objects and
Unicode strings, and thus does not otherwise directly address
the issue of character encodings.

The RFC prohibits adding a byte order mark (BOM) to the start of a JSON text,
and this module’s serializer does not add a BOM to its output.
The RFC permits, but does not require, JSON deserializers to ignore an initial
BOM in their input. This module’s deserializer will ignore an initial BOM, if
present.

The RFC does not explicitly forbid JSON strings which contain byte sequences
that don’t correspond to valid Unicode characters (e.g. unpaired UTF-16
surrogates), but it does note that they may cause interoperability problems.
By default, this module accepts and outputs (when present in the original
str) codepoints for such sequences.

Infinite and NaN Number Values

The RFC does not permit the representation of infinite or NaN number values.
Despite that, by default, this module accepts and outputs Infinity,
-Infinity, and NaN as if they were valid JSON number literal values:

>>> # Neither of these calls raises an exception, but the results are not valid JSON
>>> json.dumps(float('-inf'))
'-Infinity'
>>> json.dumps(float('nan'))
'NaN'
>>> # Same when deserializing
>>> json.loads('-Infinity')
-inf
>>> json.loads('NaN')
nan

In the serializer, the allow_nan parameter can be used to alter this
behavior. In the deserializer, the parse_constant parameter can be used to
alter this behavior.

Repeated Names Within an Object

The RFC specifies that the names within a JSON object should be unique, but
does not mandate how repeated names in JSON objects should be handled. By
default, this module does not raise an exception; instead, it ignores all but
the last name-value pair for a given name:

>>> weird_json = '{"x": 1, "x": 2, "x": 3}'
>>> json.loads(weird_json) == {'x': 3}
True

The object_pairs_hook parameter can be used to alter this behavior.

Top-level Non-Object, Non-Array Values

The old version of JSON specified by the obsolete RFC 4627 [https://tools.ietf.org/html/rfc4627.html] required that
the top-level value of a JSON text must be either a JSON object or array
(Python dict or list), and could not be a JSON null,
boolean, number, or string value. RFC 7159 [https://tools.ietf.org/html/rfc7159.html] removed that restriction, and
this module does not and has never implemented that restriction in either its
serializer or its deserializer.

Regardless, for maximum interoperability, you may wish to voluntarily adhere
to the restriction yourself.

Implementation Limitations

Some JSON deserializer implementations may set limits on:

	the size of accepted JSON texts

	the maximum level of nesting of JSON objects and arrays

	the range and precision of JSON numbers

	the content and maximum length of JSON strings

This module does not impose any such limits beyond those of the relevant
Python datatypes themselves or the Python interpreter itself.

When serializing to JSON, beware any such limitations in applications that may
consume your JSON. In particular, it is common for JSON numbers to be
deserialized into IEEE 754 double precision numbers and thus subject to that
representation’s range and precision limitations. This is especially relevant
when serializing Python int values of extremely large magnitude, or
when serializing instances of “exotic” numerical types such as
decimal.Decimal.

Command Line Interface

The simplejson.tool module provides a simple command line interface to
validate and pretty-print JSON.

If the optional infile and outfile arguments are not
specified, sys.stdin and sys.stdout will be used respectively:

$ echo '{"json": "obj"}' | python -m simplejson.tool
{
 "json": "obj"
}
$ echo '{1.2:3.4}' | python -m simplejson.tool
Expecting property name enclosed in double quotes: line 1 column 2 (char 1)

Command line options

	
infile

	The JSON file to be validated or pretty-printed:

$ python -m simplejson.tool mp_films.json
[
 {
 "title": "And Now for Something Completely Different",
 "year": 1971
 },
 {
 "title": "Monty Python and the Holy Grail",
 "year": 1975
 }
]

If infile is not specified, read from sys.stdin.

	
outfile

	Write the output of the infile to the given outfile. Otherwise, write it
to sys.stdout.

Footnotes

	1

	As noted in the errata for RFC 7159 [http://www.rfc-editor.org/errata_search.php?rfc=7159],
JSON permits literal U+2028 (LINE SEPARATOR) and
U+2029 (PARAGRAPH SEPARATOR) characters in strings, whereas JavaScript
(as of ECMAScript Edition 5.1) does not.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 simplejson	
 Encode and decode the JSON format.

Index

 C
 | D
 | E
 | I
 | J
 | L
 | M
 | O
 | P
 | R
 | S

C

 	
 	colno (simplejson.JSONDecodeError attribute)

 	
 command line option

 	infile

 	outfile

D

 	
 	decode() (simplejson.JSONDecoder method)

 	default() (simplejson.JSONEncoder method)

 	
 	doc (simplejson.JSONDecodeError attribute)

 	dump() (in module simplejson)

 	dumps() (in module simplejson)

E

 	
 	encode() (simplejson.JSONEncoder method)

 	end (simplejson.JSONDecodeError attribute)

 	
 	endcolno (simplejson.JSONDecodeError attribute)

 	endlineno (simplejson.JSONDecodeError attribute)

I

 	
 	
 infile

 	command line option

 	
 	iterencode() (simplejson.JSONEncoder method)

J

 	
 	JSONDecodeError

 	JSONDecoder (class in simplejson)

 	
 	JSONEncoder (class in simplejson)

 	JSONEncoderForHTML (class in simplejson)

L

 	
 	lineno (simplejson.JSONDecodeError attribute)

 	
 	load() (in module simplejson)

 	loads() (in module simplejson)

M

 	
 	msg (simplejson.JSONDecodeError attribute)

O

 	
 	
 outfile

 	command line option

P

 	
 	pos (simplejson.JSONDecodeError attribute)

R

 	
 	raw_decode() (simplejson.JSONDecoder method)

 	
 RFC

 	RFC 4627, [1]

 	RFC 7159, [1], [2]

S

 	
 	simplejson (module)

simplejson

simplejson is a simple, fast, complete, correct and extensible
JSON <http://json.org> encoder and decoder for Python 3.3+
with legacy support for Python 2.5+. It is pure Python code
with no dependencies, but includes an optional C extension
for a serious speed boost.

The latest documentation for simplejson can be read online here:
https://simplejson.readthedocs.io/

simplejson is the externally maintained development version of the
json library included with Python (since 2.6). This version is tested
with the latest Python 3.8 and maintains backwards compatibility
with Python 3.3+ and the legacy Python 2.5 - Python 2.7 releases.

The encoder can be specialized to provide serialization in any kind of
situation, without any special support by the objects to be serialized
(somewhat like pickle). This is best done with the default kwarg
to dumps.

The decoder can handle incoming JSON strings of any specified encoding
(UTF-8 by default). It can also be specialized to post-process JSON
objects with the object_hook or object_pairs_hook kwargs. This
is particularly useful for implementing protocols such as JSON-RPC
that have a richer type system than JSON itself.

For those of you that have legacy systems to maintain, there is a
very old fork of simplejson in the python2.2 [https://github.com/simplejson/simplejson/tree/python2.2] branch that supports
Python 2.2. This is based on a very old version of simplejson,
is not maintained, and should only be used as a last resort.

 nav.xhtml

 Table of Contents

 		
 simplejson — JSON encoder and decoder

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

